Personal Copy
Aldol Process Catalyzed by Chiral Tin Methoxides

Significance: The importance of the catalytic asymmetric aldol reaction can hardly be overestimated. Among numerous existing methods there are, however, few examples of enantioselective aldol reaction proceeding via a chiral metal enolate. The authors previously found that Bu$_2$Sn(OMe)$_2$ catalyzes the reaction between alkenyl trichloroacetates and aldehydes in the presence of methanol. In this paper they expand this methodology to a chiral version using chiral tin methoxide formed in situ from dibromide 2. The use of 10 mol% of catalyst furnished a number of acyclic products with yields of 41–80% and high enantioselectivities (88–99%). The diastereoselectivity ranged from 85:15 to >99:1. A number of cyclic substrates were also employed with moderate success.

Comment: The authors first attempted to test BINOL derivative 1 in an aldol reaction. The isolation of the corresponding dimethoxide failed due to its low stability. The in situ formed mono-methoxy derivative demonstrated some catalytic activity; however, both yield and enantioselectivity were low. As 3,3'-substituents were shown to be important for a high enantiocontrol in the aldol reaction, compound 2 was synthesized which showed superior results. Generally, despite the high stereocontrol levels, the toxic nature of organotin compounds decreases the competitiveness of the developed method.

SYNFACTS Contributors: Hisashi Yamamoto, Dmitry L. Usanov

SYNFACTS 2010, 2, 0188-0188 Published online: 21.01.2010
DOI: 10.1055/s-0029-1219104; Reg-No.: H18609SF